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Abstract

We propose a method that enables prac-
titioners to conveniently incorporate cus-
tom non-decomposable performance metrics
into differentiable learning pipelines, notably
those based upon neural network architec-
tures. Our approach is based on the recently
developed adversarial prediction framework,
a distributionally robust approach that op-
timizes a metric in the worst case given
the statistical summary of the empirical dis-
tribution. We formulate a marginal dis-
tribution technique to reduce the complex-
ity of optimizing the adversarial predic-
tion formulation over a vast range of non-
decomposable metrics. We demonstrate how
easy it is to write and incorporate complex
custom metrics using our provided tool. Fi-
nally, we show the effectiveness of our ap-
proach various classification tasks on tabu-
lar datasets from the UCI repository and
benchmark datasets, as well as image clas-
sification tasks. The code for our proposed
method is available at https://github.com/

rizalzaf/AdversarialPrediction.jl.

1 INTRODUCTION

In real-world applications, the performance of machine
learning algorithms is measured with evaluation met-
rics specifically tailored to the problem of interest. Al-
though the accuracy is the most popular evaluation
metric, many applications require the use of more com-
plex evaluation metrics that are not additively decom-
posable into sample-wise measures. For example, in
text classification area, Fβ score (weighted harmonic
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mean of precision and recall) is frequently used to eval-
uate the performance. Fβ is also popular in the clas-
sification tasks with imbalanced datasets. In medical
fields, the sensitivity, specificity, and informedness are
some of the popular evaluation metrics. Many of these
performance metrics require inherent trade-offs, for ex-
ample, balancing precision versus recall.

A variety of learning algorithms that incorporate some
of the performance metrics above into their learning
objectives have been proposed. One of the first ap-
proaches to this problem is the SVM-Perf (Joachims,
2005), which augments the constraints of a binary
SVM optimization with the metrics. Koyejo et al.
(2014) and Narasimhan et al. (2014) proposed plug-
in classifiers that rely on an external estimator of class
probability (typically using logistic regression). Hazan
et al. (2010) proposed a way to directly optimizes the
performance metric by computing the asymptotic gra-
dient of the metric. Some of the previous research fo-
cused only on a specific performance metric, most no-
tably, the F1-score (Dembczynski et al., 2011; Param-
bath et al., 2014; Lipton et al., 2014; Wang et al., 2015;
Shi et al., 2017). Optimizing the metric on specific
learning settings have also been explored, for exam-
ple, in online learning (Busa-Fekete et al., 2015; Kar
et al., 2014; Narasimhan et al., 2015) and ranking (Yue
et al., 2007; Narasimhan and Agarwal, 2013a,b; Kar
et al., 2015). Finally, several efforts have been made
to incorporate non-decomposable metrics into neural
networks training (Eban et al., 2017; Song et al., 2016;
Sanyal et al., 2018).

Despite this rich literature on learning algorithms for
non-decomposable metrics, the algorithms have not
been widely used in practical applications, particularly
in the modern machine learning applications that rely
on the representational power of neural network ar-
chitectures, where training is typically done using a
gradient-based method. Instead of being trained to op-
timize the evaluation metric of interest, they are typ-
ically trained to minimize cross-entropy loss, with the
hope that it will indirectly optimize the metric (Eban
et al., 2017). However, as mentioned in previous re-
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model = Chain(
Dense(nvar, 100, relu),
Dense(100, 100, relu),
Dense(100, 1),
vec)

objective(x, y) = mean(
logitbinarycrossentropy(model(x), y))

opt = ADAM(1e-3)
Flux.train!(objective, params(model),
train_set, opt)

model = Chain(Dense(nvar, 100, relu),
Dense(100, 100, relu), Dense(100, 1), vec)

@metric FBeta beta
function define(::Type{FBeta}, C::ConfusionMatrix, beta)

return ((1 + beta^2) * C.tp) / (beta^2 * C.ap + C.pp)
end
f2_score = FBeta(2)
special_case_positive!(f2_score)

objective(x, y) = ap_objective(model(x), y, f2_score)
Flux.train!(objective, params(model), train_set, ADAM(1e-3))

Figure 1: Code examples for incorporating F2-score metric into a neural network training pipeline (right),
compared with the standard code for cross-entropy objective (left). The codes are implemented in Julia.

search (Cortes and Mohri, 2004; Davis and Goadrich,
2006), this discrepancy between the target and opti-
mized metric may lead to inferior results.

We argue that two factors hinder the wide adoption
of the learning algorithms for non-decomposable met-
rics into many modern machine learning applications.
First, many of the existing learning algorithms are not
flexible enough to accommodate the custom need of
real-world applications. Their formulations only cover
a few types of performance metrics that may not be
relevant for some applications. Second, even though
some of the existing formulations are flexible, they do
not provide a way for practitioners to customize the
usage. The authors of these flexible methods often-
times only provide few uses case metrics in their ex-
periments and also their published codes. A signifi-
cant amount of effort (e.g., deriving the formulations
and rewriting the codes) need to be spent by a practi-
tioner who wants to implement and customize their al-
gorithm to the specific needs of the applications. This
also still be a problem even for the latest development
of algorithms that already specifically target neural
network training. These two factors force many prac-
titioners to choose a method that is easy to incorpo-
rate to their machine learning system, for example, the
cross-entropy objective (a common proxy for accuracy
metric) that is readily available in many frameworks.

In this paper, our goal is to overcome the problem
above. We propose a generic framework for optimiz-
ing arbitrary complex non-decomposable performance
metrics using gradient-based learning procedures. Our
framework can be applied to most of the common use-
cases of non-decomposable metrics. Specifically, we
require the metric to be derived from the value of the
confusion matrix with minimal requirements on how
the metric needs to be constructed. Our formulation
also supports optimizing a performance metric with a
constraint over another metric. This is useful in the
case where we want to balance the trade-off between
two metrics, for example, in the case where we want

to maximize precision subject to recall ≥ 0.8. Our
approach is based on the adversarial prediction frame-
work (Fathony et al., 2018a; Asif et al., 2015), a distri-
butionally robust framework for constructing learning
algorithms that seeks a predictor that maximizes the
performance metric in the worst case given the statisti-
cal summary of the empirical distribution. We replace
the empirical data for evaluating the predictor with
an adversary that is free to choose an evaluating dis-
tribution from the set of conditional distribution that
matches the statistics of empirical data via moment
matching on the features. Although naively applying
this approach is not possible, we develop a marginal-
ization technique that reduces the number of variables
in the resulting optimization from exponentially many
variables to just quadratic.

In addition to these algorithmic contributions, we es-
tablish the Fisher consistency of the method, a fea-
ture notably lacking from much past work approxi-
mately optimizing performance metrics (Tewari and
Bartlett, 2007; Liu, 2007). We also develop a pro-
gramming interface such that a practitioner can easily
construct the metric and integrate it into their learning
pipeline. Figure 1 provides an example of incorporat-
ing the F2-score metric into the training pipeline of
our method. Notice that only minimal changes from
the standard cross-entropy learning code are needed.
Finally, we evaluate the performance of our method
against the standard training on several benchmark
datasets within neural network learning pipelines and
demonstrate that our method vastly outperforms tra-
ditional approaches for training these networks.

2 BACKGROUND

2.1 Performance Metrics

Deciding on what performance metric to be used for
evaluating the prediction is an important aspect of ma-
chine learning applications, since it will also guide the
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Table 1: Confusion Matrix

Actual
Positive Negative

Positive True
Pos. (TP)

False
Pos. (FP)

Predicted
Pos. (PP)

P
re
d.

Negative False
Neg. (FN)

True
Neg. (TN)

Predicted
Neg. (PN)

Actual
Pos. (AP)

Actual
Neg. (AN)

All Data
(ALL)

design of learning algorithms. A performance met-
ric should be carefully picked to reflect the objective
goal of the prediction (Powers, 2011). Different tasks
in machine learning require different metrics that align
well with the tasks. For binary classification problems,
many of the commonly used performance metrics are
derived from the confusion matrix. The confusion ma-
trix is a table that reports the values that relate the
prediction of a classifier with the ground truth labels.
Table 1 shows the anatomy of the confusion matrix.

Most commonly used performance metrics can be de-
rived from the confusion matrix. Some of the met-
rics are decomposable, which means that it can be
broken down to an independent sum of another met-
ric that depends only on a single sample. However,
most of the interesting performance metrics are non-
decomposable, where we need to consider all samples
at once. There is a wide variety of non-decomposable
performance metrics. Table 2 shows some of the popu-
lar metrics and the formula on how to derive the metric
from the confusion matrix.

2.2 Existing Methods

Many existing methods have been proposed for opti-
mizing non-decomposable metrics. However, they do
not facilitate an easy way to implement the methods
on new custom tasks. They also do not provide con-

Table 2: Examples of Non-Decomposable Performance
Metrics

NAME FORMULA

Fβ-score
(1+β2) TP
β2 AP + PP

Geom. mean of Prec. & Recall TP√
PP · AP

Balanced Accuracy 1
2

(
TP
AP + TN

AN

)
Bookmaker Informedness TP

AP + TN
AN − 1

Cohen’s kappa score
( TP + TN )/ ALL − ( AP · PP + AN · PN )/ ALL 2

1−( AP · PP + AN · PN )/ ALL 2

Matthews correlation coefficient
TP / ALL − ( AP · PP )/ ALL 2

√
AP · PP · AN · PN / ALL 2

venient ways to integrate the algorithms to differen-
tiable learning pipeline on custom non-decomposable
performance metrics. SVM-Perf (Joachims, 2005) is a
large margin technique that enables the incorporation
of a performance metric to the SVM training objective.
However, for new metrics that are not explained in the
paper, we need to formulate and implement an algo-
rithm to find the maximum violated constraints for the
given metric inside its cutting plane algorithm. Plug-
in based classifiers (Koyejo et al., 2014; Narasimhan
et al., 2014) need to first solve probability estimation
problems optimally, and then tune a threshold depend-
ing on the performance metric they optimize. This
makes the techniques hard to incorporate into differen-
tiable learning pipelines. Many existing methods only
focus on developing formulations for specific perfor-
mance metrics or providing examples on a few metrics
without any complete guide on extending the meth-
ods to other metrics (Hazan et al., 2010; Dembczyn-
ski et al., 2011; Parambath et al., 2014; Lipton et al.,
2014; Busa-Fekete et al., 2015; Wang et al., 2015; Shi
et al., 2017). Finally, even though some of the existing
methods (Eban et al., 2017; Song et al., 2016; Sanyal
et al., 2018) specifically targeted their approach to neu-
ral network learning, they do not provide an easy way
to implement their method on new custom metrics.

2.3 Adversarial Prediction

Recently developed adversarial prediction framework
(Fathony et al., 2018a; Asif et al., 2015) provides an
alternative to the empirical risk minimization frame-
work (ERM) (Vapnik, 1992) for designing learning al-
gorithms. In a classification setting, the ERM frame-
work prescribes the use of convex surrogate loss func-
tion as a tractable approximation to the original non-
convex and non-continuous objective of optimizing an
evaluation metric (e.g., accuracy). In contrast, the ad-
versarial prediction framework replaces the empirical
training data for evaluating the metric with an adver-
sary that is free to choose an evaluating distribution
that approximates the training data. This approxima-
tion of the training data is performed by constrain-
ing the adversary’s distribution to match the feature
statistics of the empirical training data. Even though
we started with a non-convex and non-continuous met-
ric, the resulting optimization objective is always con-
vex with respect to the optimized variable.

The adversarial prediction framework has been pre-
viously used to design learning algorithms for many
decomposable metrics, including the zero-one loss
(Fathony et al., 2016), ordinal regression loss (Fathony
et al., 2017), abstention loss (Fathony et al., 2018a),
cost-sensitive loss metrics (Asif et al., 2015). The ex-
tensions of the framework to non-decomposable met-
rics and structured prediction have also been explored.
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The main challenge of these extensions is that naively
solve the resulting dual optimization is intractable
since we have to simultaneously consider all possible
label assignments for all samples in the dataset. Pre-
vious research have tried to reduce the complexity of
solving the problem. One of the first efforts by Wang
et al. (2015) uses a double oracle technique to solve
the problem for a few performance metrics (F1-score,
precision@k, and DCG). However, the double oracle
algorithm they use does not have any guarantee that
it will converge to the solution in polynomial time.
Additionally, extending the approach to other metrics
is hard since we have to formulate an algorithm to find
the best response for the given metric, which is harder
than the SVM-Perf’s problem on finding the most vi-
olated constraint.

The second wave of research have been proposed
for applying the adversarial prediction to non-
decomposable metrics and structured prediction using
marginalization technique that reduces the optimiza-
tion over full exponentially sized conditional distribu-
tions into their polynomially sized marginal distribu-
tions. This technique has been applied to the problem
of optimizing the F1-score metric (Shi et al., 2017),
tree-structured graphical models (Fathony et al.,
2018c), and bipartite matching in graphs (Fathony
et al., 2018b). However, these methods only focus
on the specific performance metrics, and they do not
provide a way to extend the method to custom per-
formance metrics easily. Our paper is the first effort
to generalize the marginalization technique to a vast
range of performance metrics. Our approach is also
the first method that can be easily integrated into dif-
ferentiable learning pipelines.

3 APPROACH

To achieve our goal of providing a flexible and easy to
use method for optimizing custom performance met-
rics, we formulate it as an adversarial prediction task.

3.1 Adversarial Prediction Formulation

In a binary classification task, the training exam-
ples consist of pairs of training data and labels
{(x1, y1), . . . , (xn, yn)} drawn i.i.d from a distribu-
tion D on X × Y, where X is the feature space and
Y = {0, 1}n is the set of binary labels. A classifier
needs to make a prediction ŷi for each sample xi. The
prediction is evaluated using a non-decomposable per-
formance metric, metric(ŷ,y). Here, we need to con-
sider the prediction for all samples (denoted in vector
notations) to compute the metric.

The adversarial prediction method seeks a predic-
tor that robustly maximizes the performance metric

against an adversary that is constrained to approx-
imate the training data (via moment matching con-
straints on the features) but otherwise aims to mini-
mize the metric. Both predictor and adversary players
are allowed to make probabilistic predictions over all
possible label outcomes. Denote P(Ŷ) , P̂ (Ŷ|X) as
the predictor’s probabilistic prediction and Q(Y̌) ,
P̌ (Y̌|X) as the adversary’s distribution.1 The adver-
sary player needs to approximate the training data by
selecting a conditional probability Q(Y̌) whose fea-
ture expectations match the empirical feature statis-
tics. On the other hand, the predictor is free to choose
any conditional probability P(Ŷ) that maximizes the
expected metric. Formally, the adversarial prediction
is formulated as:

max
P(Ŷ)

min
Q(Y̌)

EP̃ (X);P(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)

]
s.t.: EP̃ (X);Q(Y̌)[φ(X, Y̌)] = EP̃ (X,Y) [φ(X,Y)] , (1)

where P̃ denotes the empirical distribution. Using the
method of Lagrangian multipliers and strong duality
for convex-concave saddle point problems (Von Neu-
mann and Morgenstern, 1945; Sion, 1958), the dual
formulation of Eq. (1) can be written as:

max
θ

EP̃ (X,Y)

[
min
Q(Y̌)

max
P(Ŷ)

EP(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)

− θᵀ
(
φ(X, Y̌)− φ(X,Y)

) ]]
, (2)

where θ is the Lagrange dual variable for the moment
matching constraints of the adversary’s distribution.
This follows directly from previous results in adver-
sarial prediction (Fathony et al., 2018a).

3.2 Adversarial Prediction for Non-
Decomposable Performance Metrics

We consider a family of performance metrics that can
be expressed as a sum of fractions of the entities in the
confusion matrix (Table 1):

metric(ŷ,y) =
∑
j

ajTP + bjTN + fj(PP, AP)

gj(PP, AP)
, (3)

where aj and bj are constants, whereas fj and gj are
functions over PP and AP. Hence, the numerator is a
linear function over true positive (TP) and true neg-
ative (TN) which may also depends on sum statistics,
i.e., predicted and actual positive (PP and AP) as well
as their negative counterparts (predicted and actual
negative (PN and AN)) and all data (ALL)2. The de-
nominator depends only on the sum statistics. This

1Lowercase y and y, denote scalar and vector values,
and capitals, Y or Y, denote random variables.

2We simplify the inputs of fj and gj to be just PP and AP
since the other terms can be derived from PP and AP. ALL is
just a constant, whereas PN = ALL− PP and AN = ALL− AP.
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metric construction covers a vast range of commonly
used metrics, including all metrics in Table 2.

Applying the adversarial prediction framework to clas-
sification problems with non-decomposable metrics is
non-trivial. We take a look at the inner minimax prob-
lem of the dual formulation (Eq. (2)), i.e.:

min
Q(Y̌)

max
P(Ŷ)

EP(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)− θᵀφ(X, Y̌)

]
.

(4)
Note that we set aside the empirical potential term
(θᵀφ(X,Y)) since it does not influence the inner min-
imax solution. Unlike many previous adversarial pre-
diction research (Asif et al., 2015; Fathony et al., 2016,
2017, 2018a), we cannot reduce the problem to sample-
wise minimax problems since our metric is now non-
decomposable. We need to deal with the full condi-
tional distribution (P(ŷ) and Q(ŷ)) over all samples
which is exponential in size. Therefore, naively solving
the inner minimax problem is intractable. In the sub-
sequent analyses, we aim to reduce the complexity of
solving the problem by optimizing over the marginal
distribution of P(ŷ) and Q(ŷ).

We take a look at the expectation of the metric.
We now define the marginal probability of the event
where yi = 1 and

∑
i′ yi′ = k, which we write as

P(ŷi = 1,
∑
i′ ŷi′ = k)) and Q(y̌i = 1,

∑
i′ y̌i′ = k))

for the predictor and adversary respectively. Simi-
larly, we also define the marginal probability of the
event where yi = 0 and

∑
i′ yi′ = k. Let us de-

note pak be a vector with n items where each of its
items (pak)i represents the predictor’s marginal prob-
ability P(ŷi = a,

∑
i′ ŷi′ = k)). Similarly, we also

denote qal for the adversary’s marginal probabilities.
We also denote the marginal probability of sums as
rk = P(

∑
i ŷi = k), and sl = Q(

∑
i y̌i = l) Using

these notations, we simplify the computation of the
expected value of the performance metric in terms of
these marginal probabilities as stated in Theorem 1.3

Theorem 1. Given a performance metric that follows
the construction in Eq. (3), the expected value of the
metric over exponentially sizes conditional probabili-
ties P(Ŷ) and Q(Y̌) can be expressed as the sum of
functions over marginal probability variables p1

k, q1
l ,

p0
k, q0

l , rk, and sl as follows:

EP(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)

]
=
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1

gj(k, l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}
. (5)

Some performance metrics (e.g. precision, recall, F-
score, sensitivity, and specificity) enforce special cases

3The proof of this theorem and others in the paper are
contained in Appendix A.

to avoid division by zero. For the metrics that contains
true positive, the special cases is usually defined as:

metric(0,0) = 1; metric(0,y) = 0,∀y 6= 0; (6)
metric(ŷ,0) = 0,∀ŷ 6= 0,

whereas for the one with true negative, their cases are:

metric(1,1) = 1; metric(1,y) = 0,∀y 6= 1; (7)
metric(ŷ,1) = 0,∀ŷ 6= 1.

Here ŷ = 0 and ŷ = 1 means that the classifier pre-
dicts all samples as negative and positive respectively.
If the special cases are enforced, we need to modify
Eq. (5) accordingly. For example, if both special cases
for true positive and true negative are enforced, it be-
comes:∑
k∈[1,n−1]

∑
l∈[1,n−1]

∑
j

1

gj(k, l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ]

+ fj(k, l)rksl
}

+ P(0)Q(0) + P(1)Q(1). (8)

Let us denote a n× n marginal distribution matrix P
where each column P(:,k) represents p1

k. Similarly, we
denote a matrix Q for q1

k. For our feature, we use
additive feature function, i.e., φ(x,y) =

∑
i φ(xi, yi).

For simplicity, we also define φ(xi, yi = 0) = 0.
Let us denote Ψ be a n × m matrix where each of
its columns denotes the feature for each sample, i.e.,
Ψ:,i = φ(xi, yi = 1), and m is the number of features.
Using these notations, we simplify the dual formula-
tion of the adversarial prediction in Theorem 2.
Theorem 2. Let P and Q be the marginal predictor
and adversary probability matrices respectively. Given
a performance metric that follows the construction in
Eq. (3) and features that are additive over each sam-
ple, the dual optimization formulation (Eq. (2)) can
be equivalently computed as:

max
θ

{
min
Q∈∆

max
P∈∆

[ ∑
k,l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] (9)

+bj [p
0
k · q0

l ]+fj(k, l)rksl

}
−〈Qᵀ1,Ψᵀθ〉

]
+〈y,Ψᵀθ〉

}
,

where ∆ is the set of valid marginal probability matri-
ces denoted as:

∆ =

P

∣∣∣∣∣∣
pi,k ≥ 0 ∀i, k ∈ [1, n]

pi,k ≤ 1
k

∑
j pj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i pi,k ≤ 1

 . (10)

All of the terms in the objective: p1
k, q1

l , p0
k, q0

l , rk,
sl, P(0), and Q(0) can be computed from P and Q.

Using the construction above, we reduce the number
of optimized variables in the inner minimax from ex-
ponential size to just quadratic size. Note that the ob-
jective in Eq. (9) remains bilinear over the optimized
variables (P and Q), as in the original formulation
(Eq. (2)) that is bilinear over P(Ŷ) and Q(Y̌).
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3.3 Optimization

One of the benefits of optimizing a loss metric using
the adversarial prediction framework is that the re-
sulting dual optimization (e.g., Eq. (2) and Eq. (9))
is convex (or concave in our case of optimizing perfor-
mance metric) in θ, despite the original metric that we
want to optimize is non-convex and non-continuous.
Therefore, to achieve the global solution of θ, we can
just use the standard gradient ascent algorithm. The
sub-gradient of the objective with respect to theta is
described in the following theorem.

Theorem 3. Let L(θ) be the objective of the maxi-
mization over θ in Eq. (9) and let Q∗ be the solution of
the inner minimization over Q, then the sub-gradient
of −L(θ) with respect to θ includes:

∂θ − L(θ) 3 Ψ (Q∗ᵀ1− y) . (11)

To solve the inner minimax over Q and P, we elimi-
nate the inner-most optimization over P by introduc-
ing dual variables over some of the constraints on P
and a slack variable that convert maximization into a
set of constraints over Q and the slack variable. This
results in a linear program optimization problem.

Theorem 4. The inner minimization over Q in Eq.
(9) can be solved as a linear program in the form of:

min
Q∈∆;α≥0;v≥0

v + c(Q)− 〈Q,Ψᵀθ1ᵀ〉 (12)

s.t.: v ≥ Z(Q)(i,k) − αi,k + 1
k

∑
j αj,k, ∀i, k ∈ [1, n],

where c(Q) is a linear function of Q and Z(Q) is a
matrix-valued linear function of Q, both of which are
defined analytically by the form of the metric.4

3.4 Metric Constraints

In some machine learning settings, we may want to
optimize a performance metric subject to constraints
on other metrics. This occurs in the case where there
are trade-offs between different performance metrics.
For example, a machine learning system may want to
optimize the precision of the prediction, subject to its
recall is greater than some threshold. For these tasks,
we write the adversarial prediction formulation as:

max
P(Ŷ)

min
Q(Y̌)

EP̃ (X);P(Ŷ);Q(Y̌)

[
metric(0)(Ŷ, Y̌)

]
(13)

s.t.: EP̃ (X);Q(Y̌)[φ(X, Y̌)] = EP̃ (X,Y) [φ(X,Y)] ,

EP̃ (X,Y);P(Ŷ)

[
metric(i)(Ŷ,Y)

]
≥ τi, ∀i ∈ [1, t],

where t is the number of metric constraints. In this
formulation, we constraint the predictor to choose a

4Please see Appendix A for the details.

conditional distribution in which the expected values
of the constraint metrics evaluated on empirical data
are greater than some threshold τ .

As in Section 3.2, we use a marginalization technique
to reduce the size of the optimization problem as
stated in Theorem 5.
Theorem 5. Let P and Q be the marginal predictor
and adversary probability matrices respectively. Given
a performance metric that follows the construction in
Eq. (3), a set of constraints over metrics that also
follows the construction in Eq. (3), and features that
are additive over each sample, the dual optimization
formulation of (Eq. (13)) can be computed as:

max
θ

{
min
Q∈∆

max
P∈∆∩Γ

[ ∑
k,l∈[0,n]

∑
j

1

g
(0)
j (k,l)

{
a

(0)
j [p1

k ·q1
l ] (14)

+b
(0)
j [p0

k · q0
l ]+f

(0)
j (k, l)rksl

}
−〈Qᵀ1,Ψᵀθ〉

]
+〈y,Ψᵀθ〉

}
,

where ∆ is the set of marginal probability matrices de-
fined in Eq (10), and Γ is the set of marginal probabil-
ity matrices defined as:

Γ=

{
P

∣∣∣∣∣ ∑
k∈[0,n]

∑
j

1

g
(i)
j (k,l)

{
a

(i)
j [p1

k ·y] + b
(i)
j [p0

k ·(1−y)]

+f
(0)
j (k, l)rk

}
≥ τi,∀i∈ [1, t]

}
,where l=

∑
i′ yi′ . (15)

All of the terms in the objective: p1
k, q1

l , p0
k, q0

l , rk,
sl, P(0), and Q(0), can be computed from P and Q.

Note that the resulting optimization in the case where
we have metric constraints (Eq. (14)) is relatively sim-
ilar with the standard case (Eq. (9)). The only dif-
ference is the additional constraints over P. Since the
constraints in the set Γ are also just linear constraints
over P, we can also rewrite the inner minimization
over Q in Eq. (14) as a linear program.
Theorem 6. The inner minimization over Q in Eq.
(14) can be solved as a linear program in the form of:

min
Q∈∆;α≥0;β≥0;v≥0

v + c(Q)−〈Q,Ψᵀθ1ᵀ〉+
∑
l (µl−τl)

s.t.: v ≥ Z(Q)(i,k)−αi,k+ 1
k

∑
j αj,k+

∑
l βl (B(l))(i,k)

∀i, k ∈ [1, n], (16)

where c(Q) is a linear function of Q and Z(Q) is a
matrix-valued linear function of Q, both of which are
defined analytically by the form of the metric; whereas
µl is a constant and B(l) is a matrix, both of which
are defined analytically by the l-th metric constraint
and the ground truth label.

3.5 Integration into Differentiable Learning

In this section, we aim to integrate our formulation
into differentiable learning pipelines with a focus on
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@metric Kappa
function define(::Type{Kappa}, C::ConfusionMatrix)

pe = (C.ap * C.pp + C.an * C.pn) / C.all^2
num = (C.tp + C.tn) / C.all - pe
den = 1 - pe
return num / den

end
kappa = Kappa()
special_case_positive!(kappa)
special_case_negative!(kappa)

Figure 2: Code example for Cohen’s kappa score.

those based upon neural network architectures. First,
we note that even though we have reduced the num-
ber of variables in our formulation from exponential
to quadratic size, it is still too big for most neural
network learning tasks since the number of examples
is usually big. Therefore, when optimizing the inner
minimax over Q and P, rather than optimizing over all
samples, we perform optimization for every minibatch
which limits the size of optimized variables into a rela-
tively small quadratic size. We introduce non-linearity
into our model by using the last layer of neural net-
works model as the features that we use to constraints
the adversary’s distribution in Eq. (1). Consequently,
in the training process, we propagate back the gradient
signal in Eq. (11) to the network.

To enable easy integration with machine learning
pipelines, we develop a programming interface for writ-
ing a custom performance metric. This interface en-
ables the user to write an arbitrary complex perfor-
mance metric based on the entities in the confusion
matrix. If the metric is valid according to our metric
construction in Eq (3), we create an expression tree
that stores all the operations in the metric. This ex-
pression tree is then used when computing the objec-
tive and constraints in Eq. (9) and Eq. (14) as well as
the LP formulations in Eq. (12) and Eq. (16). We im-
plement our method on top of Julia programming lan-
guage (Bezanson et al., 2017) and its machine learning
framework, FluxML (Innes et al., 2018). However, our
method can be implemented in any other languages
and frameworks. Figure 2 provides a code example for
writing the definition of Cohen’s kappa score metric.
Note that our programming interface can handle a rel-
atively complex performance metric. Figure 3 shows
an example where we want to optimize precision, with
a constraint that the recall has to be greater than 0.8.
For more examples of the code for various performance
metrics, we refer the reader to Appendix C.

3.6 Linear Program Solver and Runtime

As mentioned in Section 3.3, the inner minimization
in the dual optimization of the adversarial prediction

@metric PR
function define(::Type{PR}, C::ConfusionMatrix)

return C.tp / C.pp
end
function constraint(::Type{PR}, C::ConfusionMatrix)

return C.tp / C.ap >= 0.8
end
prec_rec = PR()
special_case_positive!(prec_rec)
cs_special_case_positive!(prec_rec, true)

Figure 3: Code example for precision metric with a
constraint on recall metric.

framework can be reformulated as a linear program
(LP), which can be solved using any off-the-shelf LP
solver such as Gurobi, Mosek, and Clp. The number of
variables and constraints in the LP is O(m2), where m
is the batch size. The worst-case complexity of solving
a linear program is O(n3) using the interior point algo-
rithm where n the number of variables. Therefore, the
worst-case complexity of solving for the LP is O(m6)
(solvers that exploit sparsity may reduce the runtime).

To reduce the runtime complexity of solving the re-
sulting LP, we develop a customized solver using the
alternating direction method of multipliers (ADMM)
technique (Douglas and Rachford, 1956; Glowinski and
Marroco, 1975; Boyd et al., 2011). This reduces the
worst-case runtime complexity to just O(m3), where
m is the batch size. In practice, for a batch size of
25, our ADMM-based solver takes roughly 10 - 30 mil-
liseconds to converge in a desktop PC with an Intel
Core i7 processor. While it is noticeably slower than
the cross-entropy loss computation, it is still practical,
since for reasonably sized networks, the loss function
computation is usually dominated by the computation
of the previous layers. We refer the reader to Appendix
D for the detailed formulation of our custom solver.

3.7 Fisher Consistency Property

The behavior of a learning algorithm in an ideal setting
(i.e., where the algorithm is given access to the true
population distribution, and it is allowed to be opti-
mized over the set of all measurable hypothesis func-
tions), provides a useful theoretical validation. Fisher
consistency requires that the prediction model yields
the Bayes optimal decision boundary in this setting
(Tewari and Bartlett, 2007; Liu, 2007) The Fisher
consistency of the adversarial prediction framework
has been established previously for decomposable met-
rics, bipartite matching, and graphical model (Fathony
et al., 2018a,b,c). We establish the consistency of our
approach in the following theorem.

Theorem 7. Given a performance metric that fol-
lows the construction in Eq. (3), the adversarial pre-
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Figure 4: Comparison between BCE and AP-Perf.

diction formulation in Eq. (1) is Fisher consistent if
the algorithm is optimized over a set of functions that
are additive over each sample and sum statistics, i.e.,
h(x,y) =

∑
i,k ρi,k(xi, yi, k)I[

∑
i yi = k], provided that

ρi,j is allowed to be optimized over the set of all mea-
surable functions on the individual input space (xi, yi).

4 EXPERIMENTS

To evaluate our approach, we apply our formulation
to classification tasks on 20 different tabular datasets
from UCI repository (Dua and Graff, 2017) and bench-
mark datasets (Chu and Ghahramani, 2005), as well as
image datasets from MNIST and Fashion MNIST. For
the multiclass datasets, we transform them into binary
classification tasks by selecting one or more classes as
the positive label and the rest as the negative label.
We construct a multi-layer perceptron (MLP) with two
hidden layers for the tabular datasets and a convolu-
tional neural network for the image datasets. We eval-
uate the prediction using 6 different metrics: accuracy,
F1 score, F2 score, the geometric mean of precision and
recall (GPR), Matthews correlation coefficient (MCC),
and Cohen’s kappa score. We also evaluate the predic-
tion using metric constraints, specifically, we train our
method to optimize precision given that the recall is
greater than certain thresholds. We select two differ-
ent thresholds for the recall, 0.8 and 0.6. We then
measure the prediction using precision at recall equal
to the given thresholds.

We compare our method with the standard neural net-
works training that optimizes the binary cross-entropy
(BCE) on the 22 datasets. In our experiment, we train
our methods separately for each performance metric
that we want to optimize, whereas for the BCE net-

works, we only train the networks once using the cross-
entropy objective. We then measure the performance
of the prediction using 8 metrics that we have selected.
For both methods, we perform a cross-validation us-
ing validation set to select the best L2 regulariza-
tion among λ = {0, 0.001, 0.01, 0.1}. In each dataset,
we run the training procedure for 100 epochs. After
the training session finished, we compute the value of
the metric for prediction in the testing dataset. For
both methods, we select the predictive models that
achieve the best metric in the validation set. We re-
fer the reader to Appendix B for the details about the
datasets and experiment setup. The AP-Perf frame-
work code is available at https://github.com/ rizalzaf/

AdversarialPrediction.jl, whereas the experiment is
available at https://github.com/rizalzaf/AP-examples.

Figure 4 shows a scatter plot of the comparison be-
tween our method and the BCE on the 22 datasets.
The x-axis in the plot denotes the BCE performance
whereas the y-axis is the AP-Perf performance. The
blue line in the plot denotes the case where the per-
formance for both methods is equal. Points above the
line indicate that AP-Perf outperforms the BCE on the
particular dataset and evaluation metric. As we can
see from the figure, almost all of the points in the scat-
ter plot lie on or above the blue line. This shows the
benefit of our methods in optimizing the performance
metrics as opposed to training the network using the
cross-entropy objective. From the plot, we can infer
that our method provides more benefit for the “rela-
tively hard problems”, i.e., the tasks where the BCE
produces good accuracy but low to moderate perfor-
mance in other metrics. We can also see that the AP-
Perf consistently provides the best improvement over
the BCE on the F2 score metric. This can be explained
by the fact that the F2 score is the only imbalance met-
ric from the list, i.e., it emphasizes some parts of the
metric (in F2-score, recall is two times as important
as precision). Since the BCE optimizes a proxy to a
balanced metric (accuracy), it suffers more in the case
where an imbalance metric is used for evaluation.

5 CONCLUSION

We developed a technique and programming inter-
face that enable practitioners to integrate custom non-
decomposable metric into differentiable learning. Our
methods support a vast range of commonly used per-
formance metrics. The list of metrics that our ap-
proach support is, however, far from exhaustive. The
most noticeable missing metric is the area-based met-
ric (e.g., AUC-ROC), which cannot be directly com-
puted from the value of the entities in the confusion
matrix, and ranking-based metrics (e.g., precision@k
and MAP). Our future works aim to close these gaps
in the metric that we do not support.

https://github.com/rizalzaf/AdversarialPrediction.jl
https://github.com/rizalzaf/AdversarialPrediction.jl
https://github.com/rizalzaf/AP-examples
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Appendix A Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. The metric in Eq. (3) can be written in a variable notation as:

metric(ŷ,y) =
∑
j

aj
∑
i ŷiyi + bj

∑
i(1−ŷi)(1−yi) + fj(

∑
i ŷi,

∑
i yi)

gj(
∑
i ŷi,

∑
i yi)

. (17)

Therefore, the expected value of the metrics can be computed as:

EP(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)

]
(18)

a
=

∑
ŷ∈{0,1}n

∑
y̌∈{0,1}n

P(ŷ)Q(y̌) metric(ŷ, y̌) (19)

b
=

∑
ŷ∈{0,1}n

∑
y̌∈{0,1}n

P(ŷ)Q(y̌)
∑
j

aj
∑
i ŷiy̌i + bj

∑
i(1−ŷi)(1−y̌i) + fj(

∑
i ŷi,

∑
i y̌i)

gj(
∑
i ŷi,

∑
i y̌i)

(20)

c
=
∑

k∈[0,n]

∑
l∈[0,n]

∑
{ŷ|Σiŷi=k}

∑
{y̌|Σiy̌i=l}

P(ŷ)Q(y̌)

(∑
j

aj
∑
i ŷiy̌i + bj

∑
i(1−ŷi)(1−y̌i) + fj(k, l)

gj(k, l)

)
(21)

d
=
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1

gj(k, l)

(
aj
∑
{ŷ|Σiŷi=k}

∑
{y̌|Σiy̌i=l} P(ŷ)Q(y̌)

∑
i ŷiy̌i (22)

+ bj
∑
{ŷ|Σiŷi=k}

∑
{y̌|Σiy̌i=l} P(ŷ)Q(y̌)

∑
i(1−ŷi)(1−y̌i)

+
∑
{ŷ|Σiŷi=k}

∑
{y̌|Σiy̌i=l} P(ŷ)Q(y̌)fj(k, l)

)
e
=
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1

gj(k, l)

(
aj
∑
i P(ŷi = 1,

∑
i′ ŷi′ = k)Q(y̌i = 1,

∑
i′ y̌i′ = l) (23)

+ bj
∑
i(P(ŷi = 0,

∑
i′ ŷi′ = k))(Q(y̌i = 0,

∑
i′ y̌i′ = l)) + fj(k, l)P(

∑
iŷi = k)Q(

∑
iy̌i = l)

)
f
=
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1

gj(k, l)

(
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
)
. (24)

The transformations above are explained as follow:

(a) Expanding the definition of expectation of the metric to the sum of probability-weighted metrics.

(b) Applying the construction of our performance metric.

(c) Grouping the values of the metric in terms of
∑
i ŷi = k and

∑
i y̌i = l.

(d) Since each fj is just a linear function over
∑
i ŷiy̌i and

∑
i(1−ŷi)(1−y̌i), we can push the summation over∑

{ŷ|Σiŷi=k}
∑
{y̌|Σiy̌i=l} inside fj .

(e) Since
∑
i ŷiy̌i and

∑
i(1− ŷi)(1− y̌i) are both decomposable, then the expectation over P(ŷ) and Q(y̌) for

the case where
∑
i ŷi = k and

∑
i y̌i = l can be decomposed into each individual marginal probabilities

P(ŷi,
∑
i′ ŷi′ = k) and Q(y̌i,

∑
i′ y̌i′ = l). Similarly, given fixed k and l, fj(k, l) is just a constant. Hence

we can simplify the expectation over fj(k, l) in terms of the marginal probabilities of P(
∑
i ŷi = k) and

Q(
∑
i y̌i = l).

(f) Rewriting the marginal probabilities in vector notations.
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A.2 Proof of Theorem 2

Proof of Theorem 2. From Theorem 1 we know that:

max
θ

EP̃ (X,Y)

[
min
Q(Y̌)

max
P(Ŷ)

EP(Ŷ);Q(Y̌)

[
metric(Ŷ, Y̌)− θᵀ

(
φ(X, Y̌)− φ(X,Y)

)] ]
(25)

= max
θ

EP̃ (X,Y)

[
min
Q(Y̌)

max
P(Ŷ)

[ ∑
k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}

(26)

− EQ(Y̌)

[
θᵀ
(
φ(X, Y̌)− φ(X,Y)

)] ]
.

Note that the values for some pak and qal are known, i.e.:

(p1
0)i = P(ŷi = 1,

∑
iŷi = 0)) = 0, ∀i ∈ [1, n] (27)

(p0
n)i = P(ŷi = 0,

∑
iŷi = n)) = 0, ∀i ∈ [1, n] (28)

(p1
n)i = P(ŷi = 1,

∑
iŷi = n)) = P(1), ∀i ∈ [1, n] (29)

(p0
0)i = P(ŷi = 0,

∑
iŷi = 0)) = P(0), ∀i ∈ [1, n] (30)

and similarly for qal .

We now analyze the relation between p1
k and p0

k (which also applies to q1
k and q0

k). Note that each P(ŷ) such
that

∑
i ŷi = k appears k times in

∑
i P(ŷi = 1,

∑
iŷi = k)), which implies:

rk = P(
∑
iŷi = k) = 1

k

∑
i P(ŷi = 1,

∑
iŷi = k)). (31)

Therefore, we also have the relation:

P(ŷi = 0,
∑
iŷi = k) =P(

∑
iŷi = k)− P(ŷi = 1,

∑
iŷi = k)

= 1
k

∑
i P(ŷi = 1,

∑
iŷi = k))− P(ŷi = 1,

∑
iŷi = k),

for all k ∈ [1, n−1]. In vector notation, we can write:

rk = 1
k (p1

k · 1) (32)

p0
k = 1

k (p1
k · 1)1− p1

k, ∀k ∈ [1, n−1]. (33)

We know already that p0
n = 0. For computing p0

0, we know that P(ŷi = 0,
∑
iŷi = 0) = P(

∑
iŷi = 0) = P(0)

which can be computed as:

P(0) = 1−
∑
k∈[1,n] P(

∑
i ŷi = k) (34)

= 1−
∑
k∈[1,n]

1
k

∑
i P(ŷi = 1,

∑
iŷi = k))

= 1−
∑
k∈[1,n]

p1
k·1
k

Therefore, we can compute all values in p0
k,∀k ∈ [0, n], rk, P(0), and P(1) from p1

k, and thus we can perform
optimization over p1

k and q1
k only. For short, we write the as just pk and qk. Note that we know that p0 = q0 = 0.

Therefore, it suffices to optimize only over pk and qk, for all k ∈ [1, n]. Let us denote a n × n matrix P where
each column P(:,k) represents pk. Similarly, we denote a matrix Q for qk.

Let us take a look at the property of the marginal probability matrices P and Q. To be a valid marginal
probability, P has to satisfy the following constraints:

pi,k ≥ 0 ∀i, k ∈ [1, n] (35)∑
k pi,k ≤ 1 ∀i ∈ [1, n] (36)

pi,k ≤ 1
k

∑
j pj,k ∀i, k ∈ [1, n] (37)∑

k
1
k

∑
i pi,k ≤ 1 (38)

The constraints above are described below:
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• The first constraint is for the non-negativity of probability.

• The second constraint is from P(ŷi = 1) =
∑
k P(ŷi = 1,

∑
i ŷi = k) ≤ 1.

• The third constraint comes from the fact that each P(ŷ) such that
∑
i ŷi = k appears k times in

∑
i P(ŷi =

1,
∑
iŷi = k)), and thus, P(

∑
iŷi = k) = 1

k

∑
i P(ŷi = 1,

∑
iŷi = k)). Therefore, the inequality of P(yi =

1,
∑
iŷi = k) ≤ P(

∑
iŷi = k) must hold which implies the third constraint.

• The fourth constraint comes from the fact that
∑
k P(

∑
iŷi = k) ≤ 1.

The same constraints also need to hold for the probability matrix Q. We can also see that satisfying the third
and fourth constraints implies the second constraints, i.e.:∑

k

pi,k ≤
∑
k

1
k

∑
j pj,k ≤ 1. (39)

Now we take a look at the features. Let the pair (x,y) be the empirical training data. Based on the construction
of our features, we compute the potentials for θᵀφ(x,y) as:

θᵀφ(x,y) = θᵀ
∑
i

φ(x, yi) = θᵀ
∑
i

I[yi = 1]φ(x, yi = 1) = 〈y,Ψᵀθ〉, (40)

and the potentials for EQ(Y̌)

[
θᵀφ(x, Y̌)

]
as:

EQ(Y̌)

[
θᵀφ(x, Y̌)

]
= EQ(Y̌)

[
θᵀ
∑
i

φ(x, Y̌i)

]
= θᵀ

∑
i

Q(y̌i = 1)φ(x, y̌i = 1) = 〈Qᵀ1,Ψᵀθ〉. (41)

Therefore, we can simplify Eq. (2) as:

max
θ

{
min
Q∈∆

max
P∈∆

[ ∑
k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}
− 〈Qᵀ1,Ψᵀθ〉

]
+ 〈y,Ψᵀθ〉

}
,

(42)

where ∆ is the set of valid marginal probability matrix denoted as:

∆ =

P

∣∣∣∣∣∣
pi,k ≥ 0 ∀i, k ∈ [1, n]

pi,k ≤ 1
k

∑
j pj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i pi,k ≤ 1

 . (43)

A.3 Proof of Theorem 3

Proof of Theorem 3. The result follows directly from the rule of subgradient of maximum function.

−L(θ) = max
Q∈∆

min
P∈∆

[
−
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}

+ 〈Qᵀ1,Ψᵀθ〉

]
− 〈y,Ψᵀθ〉

(44)

∂θ − L(θ) 3 Ψ (Q∗ᵀ1− y) , where: (45)

Q∗ = argmax
Q∈∆

min
P∈∆

[
−
∑

k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}

+ 〈Qᵀ1,Ψᵀθ〉

]
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A.4 Proof of Theorem 4

Proof of Theorem 4. The inner minimization over Q in Eq. (9) is:

min
Q∈∆

max
P∈∆

[ ∑
k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}
− 〈Qᵀ1,Ψᵀθ〉

]
. (46)

Denote:
O(Q,P) =

∑
k∈[0,n]

∑
l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + fj(k, l)rksl
}
. (47)

Since the objective in O(Q,P) is a bilinear function over Q and P, it can be written in the form of O(Q,P) =〈
∂O(Q,P)

∂P ,P
〉

+ c(Q), where c(Q) is the terms that are constant over P. Therefore, Eq. (46) can be written as:

min
Q∈∆

max
P∈∆

〈Z(Q),P〉+ c(Q)− 〈Q,W〉, (48)

where Z(Q) = ∂O(Q,P)
∂P , and W = Ψᵀθ1ᵀ. Note that both Z(Q) and c(Q) are some linear functions that depend

on the metric.

We expand the constraints over P as:

min
Q∈∆

max
P
〈Z(Q),P〉+ c(Q)− 〈Q,W〉 (49)

s.t.: pi,k ≥ 0 ∀i, k ∈ [1, n]

pi,k ≤ 1
k

∑
j pj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i pi,k ≤ 1

We now perform a change of variable. Let us transform P to a matrix A where its element contains the value
of ai,k = 1

kai,k. We can rewrite the objective as:

min
Q∈∆

max
A
〈Z′(Q),A〉+ c(Q)− 〈Q,W〉 (50)

s.t.: ai,k ≥ 0 ∀i, k ∈ [1, n]

ai,k ≤ 1
k

∑
j aj,k ∀i, k ∈ [1, n]∑

k

∑
i ai,k ≤ 1,

where Z′(Q) is the linearly transformed Z(Q) to adjust the transformation of the variable from P to A.

Using duality, we introduce a Lagrange dual variable for ai,k ≤ 1
k

∑
j aj,k constraint.

min
Q∈∆;α≥0

max
A
〈Z′(Q),A〉+ c(Q)− 〈Q,W〉 −

∑
i,k

αi,k

(
aik − 1

k

∑
j aj,k

)
(51)

s.t.: ai,k ≥ 0 ∀i, k ∈ [1, n]∑
k

∑
i ai,k ≤ 1

We regroup the terms that depend on A as:

min
Q∈∆;α≥0

max
A
〈Z′(Q),A〉 −

∑
i,k

ai,k

(
αik − 1

k

∑
j αj,k

)
+ c(Q)− 〈Q,W〉 (52)

s.t.: ai,k ≥ 0 ∀i, k ∈ [1, n]∑
k

∑
i ai,k ≤ 1

We now eliminate the inner maximization over A by transforming it into constraints as follows:

min
Q∈∆;α≥0;v

v + c(Q)− 〈Q,W〉 (53)

s.t.: v ≥ 0

v ≥ (Z′(Q))(i,k) − αi,k + 1
k

∑
j αj,k, ∀i, k ∈ [1, n].
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The formulation above can be written in a standard linear program as:

min
Q;α;v

v + c(Q)− 〈Q,W〉 (54)

s.t.: qi,k ≥ 0 ∀i, k ∈ [1, n]

αi,k ≥ 0 ∀i, k ∈ [1, n]

v ≥ 0

qi,k ≤ 1
k

∑
j qj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i qi,k ≤ 1

v ≥ (Z′(Q))(i,k) − αi,k + 1
k

∑
j αj,k, ∀i, k ∈ [1, n],

where c(Q) is a linear function of Q and Z′(Q) is a matrix-valued linear function of Q, both of which are defined
analytically by the form of the metric.

A.5 Proof of Theorem 5

Proof of Theorem 5. Let us take a look at the expectation in the constraints:

EP(Ŷ)

[
metric(Ŷ,Y)

]
(55)

=
∑

ŷ∈{0,1}n
P(ŷ) metric(ŷ,y) (56)

=
∑

ŷ∈{0,1}n
P(ŷ)

∑
j

aj
∑
i ŷiyi + bj

∑
i(1−ŷi)(1−yi) + fj(

∑
i ŷi,

∑
i yi)

gj(
∑
i ŷi,

∑
i yi)

(57)

=
∑

k∈[0,n]

∑
j

aj
∑
{ŷ|Σiŷi=k} P(ŷ)

∑
i ŷiyi + bj

∑
{ŷ|Σiŷi=k} P(ŷ)

∑
i(1−ŷi)(1−yi) +

∑
{ŷ|Σiŷi=k} P(ŷ)fj(k, l)

gj(k, l)

(58)

=
∑

k∈[0,n]

∑
j

aj
∑
i P(ŷi = 1,

∑
i′ ŷi′ = k)yi + bj

∑
i P(ŷi = 0,

∑
i′ ŷi′ = k)(1−yi) +

∑
i P(

∑
iŷi = k)fj(k, l)

gj(k, l)
(59)

=
∑

k∈[0,n]

∑
j

aj [p
1
k · y] + bj [p

0
k · (1−y)] + fj(k, l)rk
gj(k, l)

(60)

where l =
∑
i yi. Therefore, the metric constraints can be written as:∑

k∈[0,n]

∑
j

aj [p
1
k · y] + bj [p

0
k · (1−y)] + fj(k, l)rk
gj(k, l)

≥ τi, ∀i ∈ [1, t]

The dual formulation of Eq. (13) is:

max
θ

EP̃ (X,Y)

[
min
Q(Y̌)

max
P(Ŷ)∈Γ

EP(Ŷ);Q(Y̌)

[
metric(0)(Ŷ, Y̌) + θᵀ

(
φ(X, Y̌)− φ(X,Y)

)]]
where : Γ ,

{
P(Ŷ) | EP̃ (X,Y);P(Ŷ)

[
metric(i)(Ŷ,Y)

]
≥ τi, ∀i ∈ [1, t]

}
. (61)

Following the analysis in the proof of Theorem 2, the dual formulation can be simplified as:

max
θ

{
min
Q∈∆

max
P∈∆∩Γ

[ ∑
k∈[0,n]

∑
l∈[0,n]

∑
j

1

g
(0)
j (k,l)

{
a

(0)
j [p1

k · q1
l ] + b

(0)
j [p0

k · q0
l ] + f

(0)
j (k, l)rksl

}
− 〈Qᵀ1,Ψᵀθ〉

]
+ 〈y,Ψᵀθ〉

}
,

where:

∆ =

P

∣∣∣∣∣∣
pi,k ≥ 0 ∀i, k ∈ [1, n]

pi,k ≤ 1
k

∑
j pj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i pi,k ≤ 1

 , and (62)
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Γ =

{
P

∣∣∣∣∣ ∑
k∈[0,n]

∑
j

a
(i)
j [p1

k · y] + b
(i)
j [p0

k · (1−y)] + f
(i)
j (k, l)rk)

g
(i)
j (k, l)

≥ τi, ∀i ∈ [1, t]

}
, where l =

∑
i′ yi′ . (63)

A.6 Proof of Theorem 6

Proof of Theorem 6. The inner minimization over Q in Eq. (14) is relatively similar to the standard case (Eq.
(9)). The only difference is the additional constraints over P. Since the numerators of the metrics in the
constraints are linear in terms of p1

k and p0
k (which also means linear in terms of pk), then the constraints in Γ

can be represented by some matrix B(i) and some constant µi such that:

〈B(i),P〉+ µi ≥ τi, or,
∑
k(b

(i)
k )ᵀp

(i)
k + µi ≥ τi, ∀i ∈ [1, t] (64)

Following the change of variable in the proof of Theorem 4, we can also represent the constraint in terms of A
using some matrix B′(i) such that:

〈B′(i),A〉+ µi ≥ τi, or,
∑
k(b
′(i)
k )ᵀa

(i)
k + µi ≥ τi, ∀i ∈ [1, t] (65)

Therefore, we have an inner optimization over Q and A, which can be written as:

min
Q∈∆

max
A
〈Z′(Q),A〉+ c(Q)− 〈Q,W〉 (66)

s.t.: ai,k ≥ 0 ∀i, k ∈ [1, n]

ai,k ≤ 1
k

∑
j aj,k ∀i, k ∈ [1, n]∑

k

∑
i ai,k ≤ 1

〈B′(l),A〉+ µl ≥ τl,∀l ∈ [1, t]

Using duality, we introduce Lagrange dual variables.

min
Q∈∆;α≥0;β≥0

max
A
〈Z′(Q),A〉+ c− 〈Q,W〉 −

∑
i,k

αi,k

(
aik − 1

k

∑
j aj,k

)
+
∑
l

βl

(
〈B′(l),A〉+ µl − τl

)
(67)

s.t.: ai,k ≥ 0 ∀i, k ∈ [1, n]∑
k

∑
i ai,k ≤ 1

We can convert the optimization in a standard linear program format as follows:

min
Q;α;β;v

v + c(Q)− 〈Q,W〉+
∑
l

(µl − τl) (68)

s.t.: qi,k ≥ 0 ∀i, k ∈ [1, n]

αi,k ≥ 0 ∀i, k ∈ [1, n]

βl ≥ 0 ∀l ∈ [1, s]

v ≥ 0

qi,k ≤ 1
k

∑
j qj,k ∀i, k ∈ [1, n]∑

k
1
k

∑
i qi,k ≤ 1

v ≥ (Z′(Q))(i,k) − αi,k + 1
k

∑
j αj,k +

∑
l βl (B′(l))(i,k), ∀i, k ∈ [1, n].

A.7 Proof of Theorem 7

Proof of Theorem 7. Despite its apparent differences from standard empirical risk minimization (ERM), the dual
formulation of the adversarial prediction (Eq. (2)) can be equivalently recast as an ERM method:
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min
θ

EP̃ (X,Y) [ALhθ (X,Y)] , where: (69)

ALhθ (X,Y) = max
Q(Y̌)

min
P(Ŷ)

EP(Ŷ);Q(Y̌)

[
−metric(Ŷ, Y̌) + hθ(X, Y̌)− hθ(X,Y)

]
(70)

and hθ(x,y) = θᵀφ(x,y) is the Lagrangian potential function. ALhθ (x,y) is then the surrogate loss for input x
and label y. The Fisher consistency condition for the adversarial prediction can then be written as:

h∗ ∈ H∗ , argmin
f

EP (Y|x) [ALh(x,Y)] (71)

⇒ argmax
y

h∗(x,y) ⊆ argmax
y′

EP (Y|x)[metric(y′,Y)].

It has been shown by Fathony et al. (2018a,b), for a given natural requirement of performance metric, i.e.,
metric(y,y) > metric(y,y′) for all y′ 6= y, the adversarial prediction is Fisher consistent provided that h is
optimized over all measurable functions over the input space of (x,y). We quote the result below:

Proposition 1 (Consistency result from Fathony et al. (2018a,b)). Suppose we have a metric that satisfy the
natural requirement: metric(y,y) > metric(y,y′) for all y′ 6= y. Then the adversarial surrogate loss ALh is
Fisher consistent if h is optimized over all measurable functions over the input space of (x,y).

The key to the result above is the observation that given a loss metric loss(y′,y), for the optimal potential
function h∗, h∗(x,y) + loss(y�,y) is invariant to y where y� = argmaxy′ EP (Y|x)[metric(y′,Y)]. This property
is referred to as the loss reflective property of the h minimizer. For a performance metric, the property can be
equivalently written as h∗(x,y)−metric(y�,y) is invariant to y.

We now want to reduce the input space that h needs to operate in order to achieve to Fisher consistency
property. We consider the restricted set of h defined as: h(x,y) =

∑
i,k ρi,k(x, yi, k)I[

∑
i yi = k], where each

ρ{i,k} is optimized over the set of all measurable functions on the individual input space of (x, yi). If the
performance metric follows the construction in Eq. (3), then we can achieve the loss reflective property under
the restricted set of h by setting:

ρi,k(x, yi, k) =
∑
j

aj
∑
i y
�
i yi + bj

∑
i(1−y�i )(1−yi) + fj(

∑
i y
�
i , k)

gj(
∑
i y
�
i , k)

. (72)

This will render the loss reflective property as h∗(x,y)−metric(y�,y) = 0.

Therefore, we can conclude that our method is Fisher consistent for a performance metric that follows the
construction in Eq. (3) if the algorithm is optimized over a set of functions that are additive over each sample
and sum statistics.

Appendix B Experiment Details

To evaluate our approach, we apply our formulation to classification tasks on 20 different tabular datasets from
the UCI repository (Dua and Graff, 2017) and benchmark datasets (Chu and Ghahramani, 2005), as well as
image datasets from MNIST and Fashion MNIST. Table 3 shows the list of the datasets and their properties
(the number of samples in the train, validation, and test sets). Some of the datasets are binary classification
tasks, which we use directly in our experiments. For the multiclass datasets, we transform them into binary
classification tasks by selecting one or more classes as the positive label and the rest as the negative label. Table
3 also shows the original class labels in the dataset and the classes that we select as the positive label in the
transformed binary classification. The distribution of the positive and negative samples in the training set of the
resulting binary classification tasks is described in Table 4. For all of the datasets, we perform standardization,
i.e., transform all the variables into zero mean and unit variance. For the datasets that have not been divided
into training and testing set, we split the data with the rule of 70% samples for the train set and 30% for the
test set. In addition, during the training, we also split the original training set into two different sets, 80% of
the set for training, and the rest 20% of the set for validation.
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Table 3: Properties of the datasets used in the experiments

Dataset # train set # validation set # test set original classes positive classes

abalone 2,338 585 1,254 [1,10] [6,10]
adult 25,324 6,331 13,567 [0,1] [1]
appliancesenergy 11,051 2,763 5,921 [0,1] [1]
bankdomains2 4,587 1,147 2,458 [1,10] [7,10]
bankmarketing 25,318 6,329 13,564 [0,1] [1]
californiahousing 11,558 2,889 6,193 [1,10] [7,10]
censusdomains 12,758 3,190 6,836 [1,10] [7,10]
computeractivity2 4,587 1,147 2,458 [1,10] [8,10]
default 16,800 4,200 9,000 [0,1] [1]
dutch 33,835 8,459 18,126 [0,1] [1]
eegeye 8,389 2,097 4,494 [0,1] [1]
fashion-mnist 48,000 12,000 10,000 [0,9] [0]
htru2 10,022 2,506 5,370 [0,1] [1]
letter 11,200 2,800 6,000 [1,26] [22,26]
mnist 48,000 12,000 10,000 [0,9] [0]
onlinenews 22,200 5,550 11,894 [0,1] [1]
pageblocks 3,065 766 1,642 [1,5] [4,5]
redwine 895 224 480 [1,10] [7,10]
sat 3,548 887 2,000 [1,7] [6,7]
sensorless 32,765 8,191 17,553 [1,11] [7,10]
shuttle 34,800 8,700 14,500 [1,7] [4,7]
whitewine 2,743 686 1,469 [1,10] [7,10]

For the tabular datasets, we construct a multi-layer perceptron (MLP) with two hidden layers. Each layer has
100 nodes. For the image datasets, we construct a convolutional neural network (CNN) with two convolutional
layers and two dense layers. In the training process, we use the standard gradient descent algorithm for both
the BCE and AP-Perf networks. We use the learning rate of 0.01 for the BCE networks and 0.003 for the
AP-Perf networks. We select the learning rate values for both methods based on the training and validation test
performance plot over 100 epochs.

For both methods, we perform a cross-validation using validation set to select the best L2 regularization among
λ = {0, 0.001, 0.01, 0.1}. After the training session finished, we compute the value of the metric for prediction
in the testing dataset. For both methods, we select the predictive models that achieve the best metric in the
validation set. We also implement an early stopping technique based on the validation set to avoid overfitting.
Even though we run all the networks for 100 epochs, we select the parameters on the epoch that produce the
best metric on the validation set. We then use this parameter to make predictions on the testing set.

Appendix C Code Examples for Constructing Performance Metrics

C.1 Commonly Used Performance Metrics

Below are some code examples for constructing some of commonly used performance metrics.

@metric Accuracy # Accuracy
function define(::Type{Accuracy}, C::ConfusionMatrix)

return (C.tp + C.tn) / (C.all)
end

accuracy_metric = Accuracy()
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Table 4: The number of positive and negative samples in the train set for each dataset

Dataset # train set # positive # negative positive percentage

abalone 2338 146 2192 6%
adult 25324 6258 19066 25%
appliancesenergy 11051 2961 8090 27%
bankdomains2 4587 1829 2758 40%
bankmarketing 25318 2941 22377 12%
californiahousing 11558 4637 6921 40%
censusdomains 12758 5088 7670 40%
computeractivity2 4587 1379 3208 30%
default 16800 3701 13099 22%
dutch 33835 17803 16032 53%
eegeye 8389 3769 4620 45%
fashion-mnist 48000 4764 43236 10%
htru2 10022 901 9121 9%
letter 11200 2167 9033 19%
mnist 48000 4729 43271 10%
onlinenews 22200 2899 19301 13%
pageblocks 3065 118 2947 4%
redwine 895 113 782 13%
sat 3548 819 2729 23%
sensorless 32765 11934 20831 36%
shuttle 34800 7408 27392 21%
whitewine 2743 587 2156 21%

@metric Precision # Precision
function define(::Type{Precision}, C::ConfusionMatrix)

return C.tp / C.pp
end

prec = Precision()
special_case_positive!(prec)

@metric Recall # Recall / Sensitivity
function define(::Type{Recall}, C::ConfusionMatrix)

return C.tp / C.ap
end

rec = Recall()
special_case_positive!(rec)

@metric Specificity # Specificity
function define(::Type{Specificity}, C::ConfusionMatrix)

return C.tn / C.an
end
spec = Specificity()
special_case_negative!(spec)

@metric F1Score # F1 Score
function define(::Type{F1Score}, C::ConfusionMatrix)

return (2 * C.tp) / (C.ap + C.pp)
end

f1_score = F1Score()
special_case_positive!(f1_score)
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@metric GM_PrecRec # Geometric Mean of Prec and Rec
function define(::Type{GM_PrecRec}, C::ConfusionMatrix)

return C.tp / sqrt(C.ap * C.pp)
end

gpr = GM_PrecRec()
special_case_positive!(gpr)

@metric Informedness # informedness
function define(::Type{Informedness}, C::ConfusionMatrix)

return C.tp / C.ap + C.tn / C.an - 1
end

inform = Informedness()
special_case_positive!(inform)
special_case_negative!(inform)

@metric Kappa # Cohen's kappa score
function define(::Type{Kappa}, C::ConfusionMatrix)

num = (C.tp + C.tn) / C.all - (C.ap * C.pp + C.an * C.pn) / C.all^2
den = 1 - (C.ap * C.pp + C.an * C.pn) / C.all^2
return num / den

end

kappa = Kappa()
special_case_positive!(kappa)
special_case_negative!(kappa)

@metric PrecisionGvRecall # precision given recall >= 0.8
function define(::Type{PrecisionGvRecall}, C::ConfusionMatrix)

return C.tp / C.pp
end
function constraint(::Type{PrecisionGvRecall}, C::ConfusionMatrix)

return C.tp / C.ap >= 0.8
end

precision_gv_recall = PrecisionGvRecall()
special_case_positive!(precision_gv_recall)
cs_special_case_positive!(precision_gv_recall, true)

@metric RecallGvPrecision # recall given precision
function define(::Type{RecallGvPrecision}, C::ConfusionMatrix)

return C.tp / C.pp
end
function constraint(::Type{RecallGvPrecision}, C::ConfusionMatrix)

return C.tp / C.ap >= 0.8
end

recal_gv_precision = RecallGvPrecision()
special_case_positive!(recal_gv_precision)
cs_special_case_positive!(recal_gv_precision, true)

@metric PrecisionGvRecallSpecificity # precision given recall >= 0.8 and specificity >= 0.8
function define(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix)

return C.tp / C.pp
end
function constraint(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix)

return [C.tp / C.ap >= 0.8,
C.tn / C.an >= 0.8]

end
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precision_gv_recall_spec = PrecisionGvRecallSpecificity()
special_case_positive!(precision_gv_recall_spec)
cs_special_case_positive!(precision_gv_recall_spec, [true, false])
cs_special_case_negative!(precision_gv_recall_spec, [false, true])

C.2 Performance Metrics with Arguments

Our framework also supports writing performance metric with arguments, for example, the Fβ score metric which
depends on the value of β. Below are some examples on constructing metrics with arguments.

@metric FBeta beta # F-Beta
function define(::Type{FBeta}, C::ConfusionMatrix, beta)

return ((1 + beta^2) * C.tp) / (beta^2 * C.ap + C.pp)
end

f1_score = FBeta(1)
special_case_positive!(f1_score)

f2_score = FBeta(2)
special_case_positive!(f2_score)

# precision given recall
@metric PrecisionGvRecall th
function define(::Type{PrecisionGvRecall}, C::ConfusionMatrix, th)

return C.tp / C.pp
end

function constraint(::Type{PrecisionGvRecall}, C::ConfusionMatrix, th)
return C.tp / C.ap >= th

end

precision_gv_recall_80 = PrecisionGvRecall(0.8)
special_case_positive!(precision_gv_recall_80)
cs_special_case_positive!(precision_gv_recall_80, true)

precision_gv_recall_60 = PrecisionGvRecall(0.6)
special_case_positive!(precision_gv_recall_60)
cs_special_case_positive!(precision_gv_recall_60, true)

precision_gv_recall_95 = PrecisionGvRecall(0.95)
special_case_positive!(precision_gv_recall_95)
cs_special_case_positive!(precision_gv_recall_95, true)

@metric PrecisionGvRecallSpecificity th1 th2 # precision given recall >= th1 and specificity >= th2
function define(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix, th1, th2)

return C.tp / C.pp
end
function constraint(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix, th1, th2)

return [C.tp / C.ap >= th1,
C.tn / C.an >= th2]

end

precision_gv_recall_spec = PrecisionGvRecallSpecificity(0.8, 0.8)
special_case_positive!(precision_gv_recall_spec)
cs_special_case_positive!(precision_gv_recall_spec, [true, false])
cs_special_case_negative!(precision_gv_recall_spec, [false, true])

Appendix D Linear Program Solver using the ADMM Technique

In this section we construct an ADMM formulation for solving the inner optimization over Q in Eq. (9). The
optimization can also be solved using any linear program solver as shown in the Appendix A.4. However, the
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runtime complexity of solving the LP is O(m6) where m is the batch size, which makes it impractical for a batch
of size greater than 30 samples. Our ADMM formulation reduces the runtime complexity to O(m3).

We consider an extension of the family of evaluation metrics in Eq. (3) to also include the false positive and the
false negative in the numerator of the fractions, i.e.,

metric(ŷ,y) =
∑
j

ajTP + bjTN + cjFP + djFN + fj(PP, AP)

gj(PP, AP)
, (73)

where aj , bj , cj , and dj are constants.

D.1 ADMM Formulation for Metrics with the Special Case for True Positive

We start with a task where the metric enforces a special case for true positive (for example, the precision, recall,
and F1-score). In this task, the optimization over Q in Eq. (9) becomes:

min
Q∈∆

max
P∈∆

[ ∑
k,l∈[1,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + cj [p
1
k · q0

l ] + dj [p
0
k · q1

l ] (74)

+ fj(k, l)rksl

}
+ P(0)Q(0)− 〈Qᵀ1,Ψᵀθ〉

]
.

In this section we will use matrix notations in our formulation, extending our vector notations in Appendix A.2.
Using matrix notations, Eq. (74) can be written as:

min
{Q1,Q0,s,v0}∈∆

max
{P1,P0,r,u0}∈∆

〈M1,P
ᵀ
1Q1〉+ 〈M2,P

ᵀ
1Q0〉+ 〈M3,P

ᵀ
0Q1〉 (75)

+ 〈M4,P
ᵀ
0Q0〉+ 〈M5, rs

ᵀ〉+ u0v0 − 〈Q1,Ω〉,

where the matrix variables Q1, Q0, P1, and P0 represent:

[Q1]i,j = Q(y̌i = 1,
∑
l y̌l = j), i, j ∈ {1, . . . , n}

[Q0]i,j = Q(y̌i = 0,
∑
l y̌l = j), i, j ∈ {1, . . . , n}

[P1]i,j = P(ŷi = 1,
∑
l ŷl = j), i, j ∈ {1, . . . , n}

[P0]i,j = P(ŷi = 0,
∑
l ŷl = j), i, j ∈ {1, . . . , n},

the vector and scalar variables represent:

[s]j = Q(
∑
l y̌l = j), j ∈ {1, . . . , n}

v0 = Q(
∑
l y̌l = 0)

[r]j = P(
∑
l ŷl = j), j ∈ {1, . . . , n}

u0 = P(
∑
l ŷl = 0),

and the matrix Ω = Ψᵀθ1ᵀ.

The matrix coefficients M1, M2, M3, M4, and M5 are computed from the performance metric, where each cell
k, l of the matrices represents:

[M1]k,l =
∑
j

aj
gj(k, l)

, [M2]k,l =
∑
j

bj
gj(k, l)

, [M3]k,l =
∑
j

cj
gj(k, l)

,

[M4]k,l =
∑
j

dj
gj(k, l)

, [M5]k,l =
∑
j

fj(k, l)

gj(k, l)
.

We write the original marginal distribution constraint ∆ over P in matrix notations over {P1,P0, r, u0} as:

P1 ≥ 0, P0 ≥ 0, r ≥ 0, u0 ≥ 0

r = diag(κ)Pᵀ
11

rᵀ1 + u0 = 1

P1 + P0 = 1rᵀ,
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where: κ = [ 1
1 ,

1
2 , . . . ,

1
n ]ᵀ. All of the inequalities are element-wise.

Similarly, we write the original marginal distribution constraint ∆ over Q in matrix notations over {Q1,Q0, s, v0}
as:

Q1 ≥ 0, Q0 ≥ 0, s ≥ 0, v0 ≥ 0

s = diag(κ)Qᵀ
11

sᵀ1 + v0 = 1

Q1 + Q0 = 1sᵀ.

D.1.1 Simplification and Reformulation

As mentioned in Appendix A.2, we can compute all the variables for P(yi = 0, . . .) from the variables for
P(yi = 1, . . .). Specifically, we can derive P0, r, and u0 from P1. Let we denote P = P1, then the equalities
below hold:

P0 = 11ᵀP diag(κ)−P (76)
r = diag(κ)Pᵀ1 (77)
u0 = 1− 1ᵀP diag(κ)1, (78)

and similarly for the adversary’s variables, where Q = Q1:

Q0 = 11ᵀQ diag(κ)−Q (79)
s = diag(κ)Qᵀ1 (80)
v0 = 1− 1ᵀQ diag(κ)1. (81)

Using this notation, we write Eq. (74) as:

min
Q∈∆

max
P∈∆

〈M1,P
ᵀQ〉+ 〈M2,P

ᵀ(11ᵀQ diag(κ)−Q)〉+ 〈M3, (11ᵀP diag(κ)−P)ᵀQ〉 (82)

+ 〈M4, (11ᵀP diag(κ)−P)ᵀ(11ᵀQ diag(κ)−Q)〉+ 〈M5,diag(κ)Pᵀ11ᵀQ diag(κ)〉
+ (1− 1ᵀP diag(κ)1)(1− 1ᵀQ diag(κ)1)− 〈Q,Ω〉

The constraint set ∆ for P is:

P ≥ 0

1ᵀP diag(κ)1 ≤ 1

P ≤ 11ᵀP diag(κ),

and similarly for Q:

Q ≥ 0

1ᵀQ diag(κ)1 ≤ 1

Q ≤ 11ᵀQ diag(κ),

where all of the inequalities are element-wise. This matrix inequalities for defining ∆ is equivalent with the
inequalities in Eq. (10).

By rearranging the variables, we write Eq. (82) as:

min
Q∈∆

max
P∈∆

〈P,QMᵀ
1〉+ 〈P, (11ᵀQ diag(κ)−Q)Mᵀ

2〉+ 〈11ᵀP diag(κ)−P,QMᵀ
3〉 (83)

+ 〈11ᵀP diag(κ)−P, (11ᵀQ diag(κ)−Q)Mᵀ
4〉+ 〈P,11ᵀQ diag(κ)Mᵀ

5 diag(κ)〉
+ 〈P,11ᵀQ diag(κ)11ᵀ diag(κ)〉 − 〈P,11ᵀ diag(κ)〉 − 〈Q,11ᵀ diag(κ)〉+ 1− 〈Q,Ω〉
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= min
Q∈∆

max
P∈∆

1− 〈Q,11ᵀ diag(κ)〉 − 〈Q,Ω〉 (84)

+ 〈P,QMᵀ
1 + (11ᵀQ diag(κ)−Q)Mᵀ

2 + 11ᵀQ diag(κ)Mᵀ
5 diag(κ) + 11ᵀQ diag(κ)11ᵀ diag(κ)〉 − 11ᵀ diag(κ)〉

+ 〈11ᵀP diag(κ)−P,QMᵀ
3 + (11ᵀQ diag(κ)−Q)Mᵀ

4〉

= min
Q∈∆

max
P∈∆

1− 〈Q,11ᵀ diag(κ)〉 − 〈Q,Ω〉 (85)

+ 〈P,QMᵀ
1 + (11ᵀQ diag(κ)−Q)Mᵀ

2 + 11ᵀQ diag(κ)Mᵀ
5 diag(κ) + 11ᵀQ diag(κ)11ᵀ diag(κ)〉 − 11ᵀ diag(κ)〉

+ 〈P,11ᵀQMᵀ
3 diag(κ) + 11ᵀ11ᵀQ diag(κ)Mᵀ

4 diag(κ)− 11ᵀQMᵀ
4 diag(κ)−QMᵀ

3 − 11ᵀQ diag(κ)Mᵀ
4 + QMᵀ

4〉

Given a fixed Q maximizing P ∈ ∆ over a linear objective reduces to finding the column k that has the maximum
sum of k largest elements in the column, with the additional restriction that it has to be greater than zero. We
then simplify the formulation above as:

min
Q∈∆

f(AQB + QC + D) + 〈Q,E〉+ c (86)

where:

f(X) = max(0,max
k

sum-k-largest(X(:,k))) (87)

A = 11ᵀ (88)
B = diag(κ)Mᵀ

2 + diag(κ)Mᵀ
5 diag(κ) + diag(κ)11ᵀ diag(κ) (89)

+ Mᵀ
3 diag(κ) + ndiag(κ)Mᵀ

4 diag(κ)−Mᵀ
4 diag(κ)− diag(κ)Mᵀ

4

C = Mᵀ
1 −Mᵀ

2 −Mᵀ
3 + Mᵀ

4 (90)
D = − 11ᵀ diag(κ) (91)
E = − 11ᵀ diag(κ)−Ω (92)
c = 1 (93)

D.1.2 ADMM Formulation

We perform an alternating direction method of multipliers (ADMM) optimization to optimize Eq. (86). We split
the optimization into three variables: Q,X, and Z.

min
Q,X,Z

f(Z) + 〈Q,E〉+ I∆(Q) + c (94)

s.t. Z = AXB + XC + D

Q = X,

where I∆(Q) returns 0 if Q ∈ ∆ or ∞ otherwise.

The augmented Lagrangian (scaled version) for this optimization is:

L(Q,X,Z,U,W) =

f(Z) + 〈Q,E〉+ I∆(Q) + c+
ρ

2
‖AXB + XC + D− Z + U‖2F +

ρ

2
‖X−Q + W‖2F , (95)

where ‖ · ‖F denotes the Frobenius norm of a matrix, ρ is the ADMM penalty parameter, whereas U and W are
the dual variables for the constraint Z = AXB + XC + D and Q = X respectively.

The ADMM updates for each variable are explained below:

1. Update for Q: a projection operation

Q(t+1) = argmin
Q

{
〈Q,E〉+ I∆(Q) +

ρ

2
‖X(t) −Q + W(t)‖2F

}
(96)

= argmin
Q∈∆

1

2
‖ 1
ρ (ρ(X(t) + W(t))−E)−Q‖2F (97)

= Proj∆( 1
ρ (ρ(X(t) + W(t))−E)) (98)
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2. Update for Z: a proximal operation.

Z(t+1) = argmin
Z

{
f(Z) +

ρ

2
‖AX(t)B + X(t)C + D− Z + U(t)‖2F

}
(99)

= proxf,1/ρ(AX(t)B + X(t)C + D + U(t)) (100)

3. Update for X: Sylvester equation

X(t+1) = argmin
X

{ρ
2
‖AXB + XC + D− Z(t+1) + U(t)‖2F +

ρ

2
‖X−Q(t+1) + W(t)‖2F

}
(101)

= argmin
X

{
1

2
‖AXB + XC + D− Z(t+1) + U(t)‖2F +

1

2
‖X−Q(t+1) + W(t)‖2F

}
(102)

We solve the minimization above by setting the gradient w.r.t. X to zero. Removing the superscript over
iteration t, the gradient of the objective above w.r.t. X is:

AᵀAXBBᵀ + AᵀXCBᵀ + AXBCᵀ + XCCᵀ + Aᵀ(D− Z + U)Bᵀ + (D− Z + U)Cᵀ + X + W −Q. (103)

Since A = 11ᵀ, the gradient can be simplified as:

AXnBBᵀ + AXCBᵀ + AXBCᵀ + XCCᵀ + A(D− Z + U)Bᵀ + (D− Z + U)Cᵀ + X + W −Q (104)
= AX(nBBᵀ + CBᵀ + BCᵀ) + X(CCᵀ + I) + A(D− Z + U)Bᵀ + (D− Z + U)Cᵀ + W −Q. (105)

Let F = A(D − Z + U)Bᵀ + (D − Z + U)Cᵀ + W −Q. The optimal X can be found by solving a Sylvester
equation below:

AX(nBBᵀ + CBᵀ + BCᵀ) + X(CCᵀ + I) + F = 0 (106)
AX(nBBᵀ + CBᵀ + BCᵀ) + X(CCᵀ + I) = −F (107)

AX(nBBᵀ + CBᵀ + BCᵀ)(CCᵀ + I)−1 + X = −F(CCᵀ + I)−1. (108)

Note that a Sylvester equation is a matrix equation in the form of AXB +X = C or AX +XB = C.

4. Update for U:

U(t+1) = U(t) + AX(t)B + X(t)C + D− Z(t+1). (109)

5. Update for W:

W(t+1) = W(t) + X(t+1) −Q(t+1). (110)

Please go to Section D.4, D.5, and D.6 for the detailed algorithms for the projection, proximal operator, and
Sylvester equation solver.

D.2 ADMM Formulation for Metrics without Special Cases

For the metric that does not enforce any special cases, the optimization over Q is:

min
Q∈∆

max
P∈∆

[ ∑
k,l∈[0,n]

∑
j

1
gj(k,l)

{
aj [p

1
k · q1

l ] + bj [p
0
k · q0

l ] + cj [p
1
k · q0

l ] + dj [p
0
k · q1

l ] + fj(k, l)rksl

}
− 〈Qᵀ1,Ψᵀθ〉

]
.

(111)

Since the summation index in the equation above is from 0 to n, whereas our variables P and Q represent the
indices from 1 to n, we need to treat the summation over index 0 separately. Specifically, the matrix notation
optimization is now:

min
{Q1,Q0,s,v0}∈∆

max
{P1,P0,r,u0}∈∆

〈M1,P
ᵀ
1Q1〉+ 〈M2,P

ᵀ
1Q0〉+ 〈M3,P

ᵀ
0Q1〉+ 〈M4,P

ᵀ
0Q0〉+ 〈M5, rs

ᵀ〉 (112)

+m4[0,0]u0v0 + 〈m4[0,:], u01
ᵀQ0〉+ 〈m4[:,0],P

ᵀ
01v0〉

+m5[0,0]u0v0 + 〈m5[0,:], u0s
ᵀ〉+ 〈m5[:,0], rv0〉 − 〈Q1,Ω〉,
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where:

m4[0,0] =
∑
j

dj
gj(0, 0)

, m4[0,l] =
∑
j

dj
gj(0, l)

, m4[k,0] =
∑
j

dj
gj(k, 0)

,

m5[0,0] =
∑
j

fj(0, 0)

gj(0, 0)
, m5[0,l] =

∑
j

fj(0, l)

gj(0, l)
, m5[k,0] =

∑
j

fj(k, 0)

gj(k, 0)
.

Using the same technique as in Appendix D.1, we write the optimization over the matrix P and Q only, and
regroup the variables as follows:

min
Q∈∆

max
P∈∆

〈M1,P
ᵀQ〉+ 〈M2,P

ᵀ(11ᵀQ diag(κ)−Q)〉+ 〈M3, (11ᵀP diag(κ)−P)ᵀQ〉 (113)

+ 〈M4, (11ᵀP diag(κ)−P)ᵀ(11ᵀQ diag(κ)−Q)〉+ 〈M5,diag(κ)Pᵀ11ᵀQ diag(κ)〉
+ (m4[0,0] +m5[0,0])(1− 1ᵀP diag(κ)1)(1− 1ᵀQ diag(κ)1)

+ 〈m4[0,:], (1− 1ᵀP diag(κ)1)1ᵀ(11ᵀQ diag(κ)−Q)〉+ 〈m4[:,0], (11ᵀP diag(κ)−P)ᵀ1(1− 1ᵀQ diag(κ)1)〉
+ 〈m5[0,:], (1− 1ᵀP diag(κ)1)1ᵀQ diag(κ)〉+ 〈m5[:,0],diag(κ)Pᵀ1(1− 1ᵀQ diag(κ)1)〉 − 〈Q,Ω〉

= min
Q∈∆

max
P∈∆

m4[0,0] +m5[0,0] − 〈Q,11ᵀ diag(κ)(m4[0,0] +m5[0,0])〉 − 〈Q,Ω〉 (114)

+
〈
Q, n1m4[0,:] diag(κ)− 1m4[0,:] + 1m5[0,:] diag(κ)

〉
+
〈
P,
{

QMᵀ
1 + (11ᵀQ diag(κ)−Q)Mᵀ

2 + 11ᵀQ diag(κ)Mᵀ
5 diag(κ) + 11ᵀQ diag(κ)11ᵀ diag(κ)(m4[0,0] +m5[0,0])〉

− 11ᵀ diag(κ)(m4[0,0] +m5[0,0])− n11ᵀQ diag(κ)mᵀ
4[0,:]1

ᵀ diag(κ) + 11ᵀQmᵀ
4[0,:]1

ᵀ diag(κ)

− 11ᵀQ diag(κ)mᵀ
5[0,:]1

ᵀ diag(κ) + 1mᵀ
5[:,0] diag(κ)− 11ᵀQ diag(κ)1mᵀ

5[:,0] diag(κ)
}〉

+
〈
11ᵀP diag(κ)−P,

{
QMᵀ

3 + (11ᵀQ diag(κ)−Q)Mᵀ
4 + 1mᵀ

4[:,0] − 11ᵀQ diag(κ)1mᵀ
4[:,0]

}〉

= min
Q∈∆

max
P∈∆

m4[0,0] +m5[0,0] +
〈
Q,
{
n1m4[0,:] diag(κ)− 1m4[0,:] + 1m5[0,:] diag(κ)− 11ᵀ diag(κ)(m4[0,0] +m5[0,0])−Ω

}〉
+
〈
P,
{

QMᵀ
1 + (11ᵀQ diag(κ)−Q)Mᵀ

2 + 11ᵀQ diag(κ)Mᵀ
5 diag(κ) + 11ᵀQ diag(κ)11ᵀ diag(κ)(m4[0,0] +m5[0,0])〉

− 11ᵀ diag(κ)(m4[0,0] +m5[0,0])− n11ᵀQ diag(κ)mᵀ
4[0,:]1

ᵀ diag(κ) + 11ᵀQmᵀ
4[0,:]1

ᵀ diag(κ)

− 11ᵀQ diag(κ)mᵀ
5[0,:]1

ᵀ diag(κ) + 1mᵀ
5[:,0] diag(κ)− 11ᵀQ diag(κ)1mᵀ

5[:,0] diag(κ)
}〉

+
〈
P,
{

11ᵀQMᵀ
3 diag(κ) + n11ᵀQ diag(κ)Mᵀ

4 diag(κ)− 11ᵀQMᵀ
4 diag(κ) + n1mᵀ

4[:,0] diag(κ)

− n11ᵀQ diag(κ)1mᵀ
4[:,0] diag(κ)−QMᵀ

3 − 11ᵀQ diag(κ)Mᵀ
4 + QMᵀ

4 − 1mᵀ
4[:,0] + 11ᵀQ diag(κ)1mᵀ

4[:,0]

}〉
(115)

As in Appendix D.1, the equation above can be simplified as:

min
Q∈∆

f(AQB + QC + D) + 〈Q,E〉+ c (116)
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where:

f(X) = max(0,max
k

sum-k-largest(X(:,k))) (117)

A = 11ᵀ (118)
B = diag(κ)Mᵀ

2 + diag(κ)Mᵀ
5 diag(κ) + diag(κ)11ᵀ diag(κ)(m4[0,0] +m5[0,0]) (119)

− ndiag(κ)mᵀ
4[0,:]1

ᵀ diag(κ) + mᵀ
4[0,:]1

ᵀ diag(κ)− diag(κ)mᵀ
5[0,:]1

ᵀ diag(κ)− diag(κ)1mᵀ
5[:,0] diag(κ)

+ Mᵀ
3 diag(κ) + ndiag(κ)Mᵀ

4 diag(κ)−Mᵀ
4 diag(κ)− n diag(κ)1mᵀ

4[:,0] diag(κ)− diag(κ)Mᵀ
4 + diag(κ)1mᵀ

4[:,0]

C = Mᵀ
1 −Mᵀ

2 −Mᵀ
3 + Mᵀ

4 (120)
D = − 11ᵀ diag(κ)(m4[0,0] +m5[0,0]) + 1mᵀ

5[:,0] diag(κ) + n1mᵀ
4[:,0] diag(κ)− 1mᵀ

4[:,0] (121)

E = n1m4[0,:] diag(κ)− 1m4[0,:] + 1m5[0,:] diag(κ)− 11ᵀ diag(κ)(m4[0,0] +m5[0,0])−Ω (122)

c = m4[0,0] +m5[0,0] (123)

Since the form of the objective above is similar to the one in Appendix D.1, we use the same ADMM technique
to solve the optimization over Q. Note that only the constant variables that are defined by the form of the
metric (A,B,C,D,E, and c) are modified from Eq. (86). All the ADMM updates remain the same.

D.3 ADMM Formulation for Metrics with Special Case for True Negative

For the metrics that enforce special cases for true negative only (e.g., specificity) or special cases for both true
negative and true positive (e.g., the MCC and Kappa score), we use the optimization schemes for the metrics that
do not enforce special cases for true negative, with a little modification. Specifically, we modify the coefficient
matrix M1 and M5 by setting the values in the n-th row and the n-th column to be zero, except for the (n, n)-th
cell where we set it to one. Therefore, for the metrics that enforce special cases for both true positive and true
negative, we have:

min
{Q1,Q0,s,v0}∈∆

max
{P1,P0,r,u0}∈∆

〈M�
1,P

ᵀ
1Q1〉+ 〈M2,P

ᵀ
1Q0〉+ 〈M3,P

ᵀ
0Q1〉 (124)

+ 〈M4,P
ᵀ
0Q0〉+ 〈M�

5, rs
ᵀ〉+ u0v0 − 〈Q1,Ψ〉,

whereas for the metrics that enforce special cases for true negative only we have:

min
{Q1,Q0,s,v0}∈∆

max
{P1,P0,r,u0}∈∆

〈M�
1,P

ᵀ
1Q1〉+ 〈M2,P

ᵀ
1Q0〉+ 〈M3,P

ᵀ
0Q1〉+ 〈M4,P

ᵀ
0Q0〉+ 〈M�

5, rs
ᵀ〉 (125)

+m4[0,0]u0v0 + 〈m4[0,:], u01
ᵀQ0〉+ 〈m4[:,0],P

ᵀ
01v0〉

+m5[0,0]u0v0 + 〈m5[0,:], u0s
ᵀ〉+ 〈m5[:,0], rv0〉 − 〈Q1,Ψ〉,

where:

M�
i,j =


1 if i = j = n

0 if (i = n ∧ j 6= n) ∨ (i 6= n ∧ j = n)

Mi,j otherwise.
(126)

All other ADMM optimization techniques remain the same.

D.4 Projection onto the Valid Marginal Probability Set

In the ADMM updates for Q (Eq. (98)), we need to perform a projection onto the set of valid marginal
distributions ∆. In this subsection, we will derive an algorithm to efficiently perform the projection.

Given a matrix A that is not necessary in the set ∆, we want to find P ∈ ∆ that minimizes the Euclidean
distance between A and P ∈ ∆. Specifically, we need to solve:

min
P∈∆

1
2‖P−A‖2F . (127)
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In our vector notation (see. Appendix A.2), this is equal to:

min
{pk}

1
2

∑
k

‖pk − ak‖22 (128)

subject to: pi,k ≥ 0, ∀i, k ∈ [1, n]

pi,k ≤ 1
k

∑
j pj,k, ∀i, k ∈ [1, n]∑

k
1
k

∑
i pi,k ≤ 1,

where pk and ak are the k-th column of the P and A respectively.

The constraints above can be written as:

min
{pk∈Ck}

1
2

∑
k

‖pk − ak‖22, s.t.
∑
k

pᵀ
k1

k ≤ 1 (129)

where: Ck = {pk | pk ∈ [0, rk]n; rk ≥ 0; rk =
pᵀ
k1

k }.

Using the Lagrange multiplier technique, we write the dual optimization as:

max
η≥0

min
{pk∈Ck}

1
2

∑
k

‖pk − ak‖22,+η
(∑

k
pᵀ
k1

k − 1
)

(130)

= max
η≥0
−η +

∑
k

min
pk∈Ck

{
1
2‖pk − ak‖22 + η

kpᵀ
k1
}

(131)

Given η, the inner minimization is now decomposable into each individual pk. For convenience, we drop the
subscript k in the next analysis, i.e.,

min
p∈C

{
1
2‖p− a‖22 + η

kpᵀ1
}
. (132)

where: C = {p | p ∈ [0, r]n; r ≥ 0; r = pᵀ1
k }.

This minimization problem admits a search-based analytical solution. We start with the p̄ = a − η
k , which is

the minimizer of the objective without the constraint as the proposed solution, and start with r = p̄ᵀ

k . If all of
pi lies in [0, r], we accept p̄ as the solution, otherwise, we iteratively reduce the value of the highest probability
values in p̄, which automatically reduce the value of r = p̄ᵀ

k , and simultaneously setting negative values in p̄ as
zero. This requires sorting the values in p̄ in a decreasing order.

Given we have the solution of Eq. (132) for each column, we calculate the objective and gradient of Eq. (132)
with respect to η. Since it is just a one-dimensional optimization, we efficiently solve it with a gradient-based
optimization with box constraint of η ≥ 0. Note that the objective is concave with respect to η.

D.5 Proximal Operator for the ADMM Updates

In the ADMM updates for Z (Eq. (100)), we need to perform a proximal operator for the function f(X), i.e.:

f(X) = max(0,max
k

sum-k-largest(X(:,k))). (133)

The proximal operator over f is:

proxf,1/ρ(X) = argmin
Z

{
f(Z) +

ρ

2
‖X− Z‖2F

}
(134)

Note that f(Z) can be expanded as:

f(Z) = max
P∈∆

〈P,Z〉 = min
P∈∆

〈P,−Z〉 = min
P

(I∆(P)− 〈P,Z〉) = sup
P

(〈P,Z〉 − I∆(P)) = I∗∆(Z), (135)

where I∗∆(Z) denotes the conjugate function of I∆(Z).
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Based on Moreau Decomposition (Moreau, 1962), we know that:

proxf (X) = X− proxI∆(X) (136)

= X− argmin
Z

{
I∆(Z) + 1

2‖X− Z‖2F
}

(137)

= X− argmin
Z∈∆

1
2‖X− Z‖2F (138)

= X− Proj∆(X) (139)

Therefore, we can compute proxf,1/ρ(X) as:

proxf,1/ρ(X) = X− 1
ρ proxρf∗(ρX) (140)

= X− 1
ρ Proj∆(ρX) (141)

D.6 Solving the Sylvester Equation in the ADMM update

In the ADMM updates for X (Eq. (108)), we need solve a Sylvester equation in the form of:

AX(nBBᵀ + CBᵀ + BCᵀ)(CCᵀ + I)−1 + X = −F(CCᵀ + I)−1. (142)

Many linear algebra packages in most of program languages have the capability to solve a Sylvester equation.
However, since our formulation contains matrices with special property, we develop a faster customized solver that
utilizes the eigen-decomposition technique and exploits the fact that A, (nBBᵀ+CBᵀ+BCᵀ), and (CCᵀ+I)−1

are symmetric.

First, let us simplify the equation as:

AXB + X = F, (143)

where B = (nBBᵀ + CBᵀ + BCᵀ)(CCᵀ + I)−1 and F = −F(CCᵀ + I)−1. We perform eigen-decomposition on
matrix A and B, i.e.:

A = USU−1, (144)

where U is a matrix whose i-th column is the eigenvector ui of A, and S is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues, Sii = λi. Similarly, we also have:

B = VTV−1, (145)

where V is a matrix whose i-th column is the eigenvector of B, and T is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues of B.

To make sure that we can apply the technique, we check the eigendecomposability of A and B. Since A
is symmetric, it is surely eigendecomposable. The matrix B may not be symmetric. However, both B̄ =
(nBBᵀ + CBᵀ + BCᵀ) and C̄ = (CCᵀ + I)−1 are symmetric. Based on matrix similarity property, since
B = B̄C̄, the eigenvalues of B are the same as the eigenvalues of C̄

1
2 B̄C̄C̄−

1
2 = C̄

1
2 B̄C̄

1
2 , which is symmetric.

Therefore, B is also eigendecomposable.

Applying the eigendecomposition technique, we have:

AXB + X = F (146)

USU−1XVTV−1 + X = F (147)

US(U−1XV)TV−1 + X = F. (148)

Denote X∗ = U−1XV. We then have:

USX∗TV−1 + X = F (149)

U−1USX∗TV−1V + U−1XV = U−1FV (150)

SX∗T + X∗ = U−1FV (151)
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Let G = U−1FV. Since both S and T are diagonal matrices, we can solve for X� easily by solving element-wise
equations, i.e.:

X�i,j(Si,iTj,j + 1) = Gi,j (152)

X�i,j =
Gi,j

Si,iTj,j + 1
. (153)

We can then easily recover X from X� by computing:

X = UX�V−1. (154)

When applying the decomposition technique above to the ADMM optimization, only the matrix F changes in
each iteration. All other matrices are fixed based on the form of the optimized performance metric. Therefore,
we only perform the eigendecomposition once and store most of the required variables for the computation. This
left us with just a few matrix multiplication operations that need to be computed for each ADMM iteration.

D.7 Runtime Analysis

For a batch of m samples, all of the matrix variables in the ADMM formulations are m×m matrices. We run the
ADMM algorithm for solving the inner optimization over Q in a fixed number of iterations (i.e., 100 iterations).
In each iteration, we need to perform updates over the primal variables Q, Z, and X. In updating Q, we perform
a projection algorithm to the set ∆. The runtime of the projection consists of sorting m-columns of m-items
which costs m2 logm in total. The iterative algorithm for finding the best pk requires scanning the list, which
costs O(m) for each column, or O(m2) in total. The one-dimensional optimization for finding the optimal η
converges very quickly. We cap the number of iterations of finding η to be at most 20 iterations. Hence, the
total runtime of the projection algorithm is O(m2 logm). The algorithm for computing the prox function in
Z updates costs the same as the projection algorithm. For solving the Sylvester equation, we need to perform
eigendecomposition once, which costs O(m3). For every ADMM iterations, we only need to perform a few matrix
multiplication operations, which costs O(m2.5). Therefore, the total runtime complexity for solving the inner
optimization over Q using our ADMM algorithm is O(m3).
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